Towards Enhanced Gas Sensor Performance with Fluoropolymer Membranes

نویسندگان

  • Thorsten Graunke
  • Katrin Schmitt
  • Stefan Raible
  • Jürgen Wöllenstein
چکیده

In this paper we report on how to increase the selectivity of gas sensors by using fluoropolymer membranes. The mass transport of polar and non-polar gases through a polymer membrane matrix was studied by systematic selection of polymers with different degrees of fluorination, as well as polymers whose monomers have ether groups (-O-) in addition to fluorine groups (-F). For the study, a set of application-relevant gases including H₂, CO, CO₂, NO₂, methane, ethanol, acetone, and acetaldehyde as well as various concentrations of relative humidity were used. These gases have different functional groups and polarities, yet have a similar kinetic diameter and are therefore typically difficult to separate. The concentrations of the gases were chosen according to international indicative limit values (TWA, STEL). To measure the concentration in the feed and permeate, we used tin-dioxide-based metal oxide gas sensors with palladium catalyst (SnO₂:Pd), catalytic sensors (also SnO₂:Pd-based) and thermal conductivity sensors. This allows a close examination of the interdependence of diffusion and physicochemical operating principle of the sensor. Our goal is to increase the selectivity of gas sensors by using inexpensive fluoropolymer membranes. The measurements showed that through membranes with low polarity, preferably non-polar gases are transported. Furthermore, the degree of crystallization influences the permeability and selectivity of a polymer membrane. Basically the polar polymers showed a higher permeability to water vapor and polar substances than non-polar polymer membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TiO2 based surface acoustic wave gas sensor with modified electrode dimensions for enhanced H2 sensing application

The design and optimization of nanostructure-based surface acoustic wave (SAW) gas sensor is analyzed based on TiO2 sensing layer and modified electrode dimensions. The sensitivity of the gas sensor depends upon the type of sensing layer used and active surface area obtained by varying the aspect ratio. The performance of the sensor is observed from 0.1ppm to 100ppm concentration of ...

متن کامل

Effect of Ethylene Oxide Functional Groups in PEBA-CNT Membranes on CO2/CH4 Mixed Gas Separation

Poly (ether-block-amide) /poly (ethylene glycol)/ carbon nanotubes mixed matrix membranes have been successfully fabricated using solvent evaporation method to determine the effect of ethylene oxide groups on the performance of produced membranes. The effects of CNTs (2-8 wt%) and PEG (up to 50 wt%)were investigated in both single and mixed gas test setup in different temperature and pressure. ...

متن کامل

ZnO nanoparticles as sensing materials with high gas response for detection of n-butanol gas

The high crystallinity ZnO nanoparticles with an average particle diameter 30 nm have been successfully synthesized with a surfactant-mediated method. The cationic surfactant (cetyltrimethylammonium bromide, CTAB) and the hydrous metal chlorides (ZnCl2⋅2H2O) appear to be the good candidates for obtaining a high yield of nanoparticles. The structural and morphological characterizations were carr...

متن کامل

Correlating Physicochemical Properties of Commercial Membranes with CO2 Absorption Performance in Gas-Liquid Membrane Contactor

The gas-liquid membrane contactor (GLMC) is a promising alternative gas absorption/desorption configuration for effective carbon dioxide (CO2 ) capture. The physicochemical properties of membranes may synergistically affect GLMC performances, especially during the long-term operations. In this work, commercial polypropylene (PP) and polyvinylidene fluoride (PVDF) hollow fiber (HF) membranes wer...

متن کامل

Four-wire orthogonal structure for accurate measurement of fluid velocity and wind flow direction using silicon micro-machining on silicon nitride membranes

Microelectromechanical thermal sensors are one of the most accurate and important tools for measuring the direction and velocity of an acoustic wave and winds. Detection of wind direction and speed in different ranges has different applications such as meteorology, wind power plants, gas flow measurement in smart building and gas consumption of power plants. In this paper, a four wires sensor i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016